STRUCTURAL CONFIRMATION OF DIHYDROCINNAMIC ACIDS FROM ADISCANTHUS FUSCIFLORUS BY 13C NMR*

Paulo C. Vieira†, Marden A. de Alvarenga†, Otto R. Gottlieb†, Maria de Nazare, V. McDougall‡ and Francisco de A. M. Reis‡

† Instituto de Química, Universidade de São Paulo, c.p. 20780, São Paulo, SP; ‡ Instituto de Química. Universidade Estadual de Campinas, c.p. 1170, 13.100-Campinas, SP, Brazil

(Received 17 May 1979)

Key Word Index—Adiscanthus fusciflorus; Rutaceae; dihydrocinnamic acids; alkaloids; ¹³C NMR spectra.

Abstract—In the wood of Adiscanthus fusciflorus six known alkaloids 4-methoxy-2-quinolone, 1-methyl-4methoxy-2-quinolone, dictamine, skimmianine, γ-fagarine and N-methylflindersine and two new dihydrocinnamic acids 3-[2',6'-dimethoxy-6",6"-dimethylpyrano(2",3":4',3')phenyl]-propionic acid and its methyl ester were identified. The structures of the dihydrocinnamic acid derivatives were confirmed by ¹³C NMR.

Adiscanthus fusciflorus Ducke, an arboreous Rutaceae species from the Amazon region, contains in a section of its trunk (bark included) 4-methoxy-2-quinolone, 1methyl-4-methoxy-2-quinolone, dictamine and skimmianine [3], y-fagarine [4] and N-methylflindersine. All these alkaloids have been separated previously from other rutaceous species, the first four inclusively from another Amazonian species, Hortia longifolia Spr. ex Engl. [3], and the last one by N-methylation of natural flindersine [5]. Their identification was based on spectra and direct comparison with authentic samples.

Two additional constituents, isolated from the same extract of A. fusciflorus, were the dihydrocinnamic acid derivatives 1a and 1b, which, jointly with dihydrocinnamyl alcohols such as 1c [6], had been previously found in Hortia badinii M.A. Lisboa. The structural elucidation of these natural products had been based chiefly on the interpretation of ¹H NMR spectra. Their re-isolation was therefore an opportunity to test the proposed formulae by ¹³C NMR.

1a $R^1 = CO_2Me$, $R^2 = OMe$

1b $R^1 = CO_2H$, $R^2 = OMe$

1c $R^1 = CH_2OH, R^2 = H$

The phloroglucinol type substitution for 1a can be safely accepted from ¹H NMR evidence for the sole aromatic proton (δ 6.18). The corresponding unsubstituted C-5' must indeed be vicinal to only one methoxyl (δ 55.3), ¹³C NMR showing the other one $(\delta 62.0)$ to be flanked by two ortho substituents. The signals due to the corresponding ipso-carbons (C-6' 8 158.5, C-2' 8 154.9) can be easily assigned due to their complex secondary splitting in the fully protoncoupled C spectrum. In this same spectrum, signals of the ipso-carbons C-2" and C-3" show a contrastingly simpler splitting pattern which can be eliminated by decoupling respectively at the resonance frequencies of H-4" (double irradiation at δ 6.48) and H-5" (double irradiation at δ 5.45). These decoupling experiments were additionally very useful in the confirmation of the respective assignment of signals to C-4" and C-5" since the first order C-H couplings are eliminated. Finally, double irradiation at the frequency of the gem-dimethyl protons (δ 1.38) collapsed the fine splitting of the C-5" signal, confirming the vicinality of this carbon and CMe₂. At this stage, since correlation of signals to carbons of the propionic acid moiety is trivial, only the signals at δ 113.7 and 75.5 remained to be assigned, a task performed by comparison with model compounds 2 [7] and 3 [8], respectively.

The spectrum of 1a served as the basis in the interpretation of the spectra of 1b, dihydro-1b and 1c. The suppression of the 4",5"-double bond of 1b in dihydro-1b caused a paramagnetic shift of the C-2" signal ($\Delta \delta$ 4.4), an expression of the endocyclic homoallylic effect [9]. Most significantly, from the

^{*}Part IV in the series "The Chemistry of Brazilian Rutaceae". For Part III see ref. [1]. Based on part of the M.S. thesis presented by P.C.V. to Universidade de São Paulo (1978). Also part of a project on the ¹³C NMR spectroscopy of natural products. For the preceding paper see ref. [2].

Table 1. Carbon shifts of the natural dihydrocinnamic acids and dihydro derivative 1, and the model compounds 2 and 3*

C	1 a	1 b	Dihydro-1b	1c	2[7	7]	3 [8]
MeO-1	51.2						
1	173.5	176.5	179.5	61.4			
2	34.0	33.8	34.2	33.5			
3	19.0	18.7	19.0	24.9			
1'	113.7	113.5	113.0	125.7			
2'	154.9	154.4	153.4	153.4	158.1		
MeO-2'	62.0	61.8	60.6	62.1			
3'	107.4	107.2	106.5	114.4	109.7		117.6
4′	152.9	152.5	156.9†	152.0	153.9		152.5
5′	95.7	95.6	96.0	112.5	109.9		112.5
6'	158.5	158.2	157.2†	130.2			159.9
MeO-6'	55.3	55.0	55.3				
4"	117.2	116.7	17.1	117.1			
5"	126.7	126.7	32.5	126.9			
6"	75.5	75.6	74.1	75.4	76.3		
2Me-6"	27.7	27.6	26.7	27.6	27.8	18.6	

^{*}The numbering system of the model compounds was selected to facilitate comparison of analogous carbons in 1, 2 and 3.

point of view of structural confirmations, the C-6' (δ 158.5) and C-3' (δ 19.0) peaks of **1a** appear at higher (δ 130.2) and lower (δ 24.9) field, respectively, in the spectrum of **1c**. This is due to the absence in this compound of MeO-6' which thus fails to shield C-3 through a γ -effect.

EXPERIMENTAL

Isolation of the constituents. Adiscanthus fusciflorus Ducke was collected near Manaus, AM and identified by W. A. Rodrigues, botanist, Instituto Nacional de Pesquisas da Amazônia. Powdered trunkwood and bark (2 kg) were extracted with EtOH. The extract (20 g) was suspended in hexane, filtered, the hexane evapd and the residue (7 g) submitted to dry column chromatography (Si gel deactivated with 10% H₂O, C₆H₆-CHCl₃, 9:1). The column was extruded and divided into 8 equal parts which gave from bottom to top 8 fractions. Fraction 4 was purified by TLC (Si gel, C₆H₆-EtOAc, 7:3) giving **1a** (30 mg). Fractions 5 and 6 were washed with hexane to give 1b (200 mg). Fraction 7 contained 1-methyl-4-methoxy-2-quinolone. The hexane insol, part of the extract was suspended in CHCl₃ and filtered. The CHCl₃ was evapd and the residue (6 g) submitted to Si gel (120 g) column chromatography, elution with CHCl3-MeOH, 100:0 to 95:5, giving fractions A to G. Fraction B was purified by TLC (Si gel, C₆H₆-EtOAc, 4:1) to give 1a (60 mg). Fraction C was separated by TLC (Si gel, C₆H₆-EtOAc, 7:3) into dictamine (20 mg) and γ-fagarine (60 mg). Fraction D was purified similarly to give N-methylflindersine (50 mg). Fraction E was separated by TLC (Si gel, C₆H₆-EtOAc, 3:2) into skimmianine (20 mg) and 1-methyl-4-methoxy-2-quinolone. Fraction G was washed and cryst. from EtOH to give 4-methoxy-2-quinolone. Fractions A and F did not lead to pure compounds.

Acknowledgements—This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Financiadora de Estudos e Projetos. The authors are indebted to Prof. Ayssor P. Mourão, Instituto Nacional de Pesquisas da Amazônia, CNPq, Manaus, for the plant extract; and to Dr. Adolfo P. de Pádua, Universidade Federal de Minas Gerais, Belo Horizonte, for compound 1c.

REFERENCES

- Corrêa, D. de B., Gottlieb, O. R. and Pádua, A. P. de (1979) Phytochemistry 18, 351.
- Morel, A. F., Bravo, R. V. F., Reis, F. de A. M. and Rúveda, E. A. (1979) Phytochemistry 18, 473.
- 3. Corrêa, D. de B., Gottlieb, O. R., Pádua, A. P. de and Rocha, A. I. da (1976) Rev. Latinoam. Quim. 7, 43.
- 4. Robertson, A. V. (1963) Aust. J. Chem. 16, 451.
- Iriarte, J., Kincl, F. A., Rosenkranz, G. and Sondheimer, F. (1956) J. Chem. Soc. 4170.
- Corrêa, D. de B., Gottlieb, O. R. and Pádua, A. P. de (1975) Phytochemistry 14, 2059.
- Archer, R. A., Johnson, D. W., Hagaman, E. W., Moreno, L. N. and Wenkert, E. (1977) J. Org. Chem. 42, 490.
- Wenkert, E., Buckwalter, B. L., Burfitt, I. R., Gašić, M. J., Gottlieb, H. E., Hagaman, E. W., Schell, F. M. and Wovkulich, P. M. (1976) Topics in Carbon-13 NMR Spectroscopy (Levy, G. C., ed.) Vol. 2. Wiley-Interscience, New York.
- Wenkert, E., Cochran, D. W., Hagaman, E. W., Schell, F. M., Neuss, N., Katner, A. S., Potier, P., Kan, C., Plat, M., Koch, M., Mehri, H., Poisson, J., Kunesch, N. and Rolland, Y. (1973) J. Am. Chem. Soc. 95, 4990.

[†] Interchangeable.